Scenario generation for cooling, heating, and power loads using generative moment matching networks

نویسندگان

چکیده

Scenario generations of cooling, heating, and power loads are great significance for the economic operation stability analysis integrated energy systems. In this paper, a novel deep generative network is proposed to model load curves based on moment matching networks (GMMN) where an auto-encoder transforms high-dimensional into low-dimensional latent variables maximum mean discrepancy represents similarity metrics between generated samples real samples. After training model, new scenarios by feeding Gaussian noises scenario generator GMMN. Unlike explicit density models, GMMN does not need artificially assume probability distribution curves, which leads stronger universality. The simulation results show that only fits multi-class well, but also accurately captures shape (e.g., large peaks, fast ramps, fluctuation), frequency-domain characteristics, temporal-spatial correlations loads. Furthermore, consumption closely resembles

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Generative Moment Matching Networks

We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer preceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Inst...

متن کامل

Conditional Generative Moment-Matching Networks

Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment-matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learn...

متن کامل

Model-Free Renewable Scenario Generation Using Generative Adversarial Networks

Scenario generation is an important step in the operation and planning of power systems with high renewable penetrations. In this work, we proposed a data-driven approach for scenario generation using generative adversarial networks, which is based on two interconnected deep neural networks. Compared with existing methods based on probabilistic models that are often hard to scale or sample from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CSEE Journal of Power and Energy Systems

سال: 2022

ISSN: ['2096-0042']

DOI: https://doi.org/10.17775/cseejpes.2021.00680